Trigonometric Functions

Assertion Reason Questions

Direction: In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R).

Choose the correct answer out of the following choices.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (c) (A) is true but (R) is false.
- (d) (A) is false but (R) is true.
- **1. Assertion (A):** The radius of the circle in which a central angle of 60° intercepts an arc of length 44 cm is 42 cm.

Reason (R): Length of an arc of a circle is

 $L = r\theta$, where r is non-italic angle.

Ans. (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation: Here,
$$l = 44$$
 cm and $\theta = 60^{\circ} = \frac{\pi}{3}$

As we know that

$$l = r\theta$$

$$r = \frac{l}{\theta}$$

$$= \frac{44 \times 3}{\pi}$$

$$= \frac{44 \times 3 \times 7}{22} = 42 \text{ cm}$$

2. Assertion (A): Value of sin (-270)° is 1.

Reason (R): $\sin (180^{\circ} + \theta) = \sin \theta$.

Ans. (a) Both (A) and (R) are true and R is the correct explanation of (A).

Explanation: sin(-270°)=sin (180° +90°)

We know that

$$\sin (180^{\circ}+\theta)=\sin \theta$$

$$=(-\sin 90^{\circ})=1$$

3.

Assertion (A): The value of $\theta = \frac{\pi}{3}$ or $\frac{2\pi}{3}$,

when θ lies between (0, 2π) and

$$\sin^2\theta=\frac{3}{4}.$$

Reason (R): $\sin \theta$ is positive in the first and second quadrant.

Ans. (d) (A) is false but (R) is true.

Explanation: Given, $\sin^2 \theta = \frac{3}{4}$

$$\Rightarrow \sin \theta = \frac{\sqrt{3}}{2} \text{ or } -\frac{\sqrt{3}}{2}.$$

Case I: When $\sin \theta = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3}$

$$\Rightarrow \sin \theta = \sin \frac{\pi}{3} \text{ or } \sin (\pi - \frac{\pi}{3})$$

$$\Rightarrow \qquad \theta = \frac{\pi}{3} \text{ or } \pi - \frac{\pi}{3} ,$$

i.e.,
$$\theta = \frac{\pi}{3}$$
 or $\frac{2\pi}{3}$

Case II: When $\sin\theta = -\frac{\sqrt{3}}{2}$, then θ lies either in

the third or fourth quadrant.

Now,
$$\sin \theta = -\frac{\sqrt{3}}{2} = -\sin \frac{\pi}{3}$$

$$= \sin\left(\pi + \frac{\pi}{3}\right) \text{ or } \sin\left(2\pi - \frac{\pi}{3}\right)$$

$$\theta = \pi + \frac{\pi}{3} \text{ or } 2\pi - \frac{\pi}{3}$$

$$\Rightarrow \qquad \theta = \frac{4\pi}{3} or \frac{5\pi}{3},$$

Hence,
$$\sin^2 \theta = \frac{3}{4}$$
, $0 < \theta < 2 \pi$

$$\Rightarrow \theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3},$$

4. Let sec θ + tan θ =m, where 0 < m < 1.

Assertion (A):
$$\sec \theta = \frac{m^2 + 1}{2m}$$
 and
$$\sin \theta = \frac{m^2 - 1}{m^2 + 1}$$

Reason (R): > lies in the third quadrant.

Ans. (c) (A) is true but (R) is false.

Explanation: Given, $\sec \theta + \tan \theta = m$,

where, 0 < m < 1 ...(i)

We know that, $\sec^2 \theta - \tan^2 \theta = 1$...(ii)

dividing (ii) by (i), we get

Also,
$$\sin \theta = \tan \theta \cos \theta = \frac{\tan \theta}{\sec \theta} = \frac{m^2 - 1/2m}{m^2 + 1/2m}$$
$$= \frac{m^2 - 1}{m^2 + 1}$$

5. Let a be a real number lying between 0 and

 $\frac{\pi}{2}$ and *n* be a positive integer.

Assertion (A):
$$\tan \alpha + 2 \tan 2\alpha + 2^2 \tan 2^2 \alpha + \dots + 2^{n-1} \tan 2^{n-1} \alpha + 2^n \cot 2^n \alpha = \cot \alpha$$

Reason (R): $\cot \alpha - \tan \alpha = 2 \cot 2\alpha$.

Ans. (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation:

Given,
$$\cot \alpha - \tan \alpha = \frac{1}{\tan \alpha} - \tan \alpha = \frac{1 - \tan^2 \alpha}{\tan \alpha}$$

$$= 2\left(\frac{1-\tan^2\alpha}{2\tan\alpha}\right) = 2\cot 2\alpha$$

From here, we get $\tan \alpha = \cot \alpha - 2 \cot 2\alpha$

Making repeated use of this identify, we shall obtain

$$\tan \alpha + 2 \tan 2\alpha + 2^2 \tan 2^2 \alpha + ... + 2^{n-1} \tan 2^{n-1} \alpha + 2^n \cot 2^n \alpha$$

=
$$(\cot \alpha - 2 \cot 2\alpha) + 2(\cot 2\alpha - 2 \cot 2^2 \alpha) + 2^2$$

 $(\cot 2^2 \alpha - 2 \cot 2^3 \alpha) + ... + 2^{n-1} (\cot 2^{n-1} \alpha - 2 \cot 2^n \alpha) + 2^n \cot 2^n \alpha = \cot \alpha$

6. Assertion (A): The value of sin (-690°) cos

 $(-300^{\circ}) + \cos(-750^{\circ}) \sin(-240^{\circ}) = 1$

Reason (R): The value of sin and cos is negative in the third and fourth quadrant respectively.

Ans. (c) (A) is true but (R) is false.

Explanation: sin (-690°)=-sin 690°

=-sin (2 x 360° - 30°)

7. If $A + B + C = 180^{\circ}$, then

Assertion(A):
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} - \cos^2 \frac{C}{2}$$

$$= 2\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}$$

Reason (R): $\cos C + \cos D$

$$= 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

Ans. (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation: Given,
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} - \cos^2 \frac{C}{2}$$

$$= \frac{1 + \cos A}{2} + \frac{1 + \cos B}{2} - \frac{1 + \cos C}{2}$$

$$= \frac{1 + (\cos A + \cos B - \cos C)}{2} \qquad ...(i)$$

Now, $\cos A + \cos B - \cos C$

$$= 2\cos\frac{A+B}{2}\cos\left(\frac{A-B}{2}\right) - \cos\left(2\cdot\frac{C}{2}\right)$$

$$= 2\sin\frac{C}{2}\cos\left(\frac{A-B}{2}\right) - \left(1 - 2\sin^2\frac{C}{2}\right)$$

$$\left[\because \cos\left(\frac{A+B}{2}\right) = \cos\left(90^{\circ} - \frac{C}{2}\right) = \sin\left(\frac{C}{2}\right)\right]$$

$$= 2\sin\frac{C}{2}\left\{\cos\left(\frac{A-B}{2}\right) + \sin\left(\frac{C}{2}\right)\right\} - 1$$

$$= -1 + 2\sin\frac{C}{2}\left\{\cos\left(\frac{A-B}{2}\right) + \cos\left(\frac{A+B}{2}\right)\right\}$$

$$= -1 + 4\sin\left(\frac{C}{2}\right)\cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right) \qquad ...(ii)$$

From (i) and (ii), we get

L.H.S of the given identity

$$= \frac{1 + \left(-1 + 4\cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)\right)}{2}$$
$$= 2\cos\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)$$

